34 research outputs found

    Towards an integrated system for vegetation fire monitoring in the Amazon basin

    Get PDF
    Biomass burning is a major environmental problem in Amazonia. Satellite fire detections represent the primary source of information for fire alert systems, decision makers, emissions modeling groups and the scientific community in general. Those various users create a growing demand for good quality fire data of higher spatial and temporal resolution that can only be achieved via integration of multiple satellite fire detection products. The main objective of this dissertation was to develop an integrated fire product capable of improved monitoring and characterization of fire activity in Brazilian Amazonia. Two major active fire detection algorithms based on MODIS and GOES data were used to meet the users demand for fire information. Large differences involving the performance of the MODIS and GOES fire products required the quantification of omission and commission errors in order to allow for appropriate treatment of individual detections produced by each data set. Relatively small omission errors due to cloud obscuration were estimated for Brazilian Amazonia. Regional climate conditions result in reduced cloud coverage in areas of high fire activity during the peak of the dry season, therefore minimizing the effects of cloud obscuration on fire detection omission errors. Clear sky omission and commission errors were largely dependent on the vegetation and background conditions. Relatively large commission errors occurring in high percentage tree cover areas suggested that fire detection algorithms must either be regionalized or incorporate additional tests to provide more consistent fire information across a broader range of surface conditions. Integration of MODIS and GOES fire products using a physical parameter describing fire energy (i.e., fire radiative power) was proven difficult due to limitations involving the interplay between sensor characteristics and the types of fires that occur in Amazonia. As part of this research, a new integrated product was generated based on binary fire detection information derived from MODIS and GOES data, incorporating adjustments to reduce commission and omission errors and optimizing the complementarities among individual detections. These findings made a significant contribution to fire monitoring science in Amazonia and could play an important role in the development of future fire detection algorithms for tropical regions

    The collection 6 MODIS active fire detection algorithm and fire products

    Get PDF
    AbstractThe two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, on-board NASA's Terra and Aqua satellites, have provided more than a decade of global fire data. Here we describe improvements made to the fire detection algorithm and swath-level product that were implemented as part of the Collection 6 land-product reprocessing, which commenced in May 2015. The updated algorithm is intended to address limitations observed with the previous Collection 5 fire product, notably the occurrence of false alarms caused by small forest clearings, and the omission of large fires obscured by thick smoke. Processing was also expanded to oceans and other large water bodies to facilitate monitoring of offshore gas flaring. Additionally, fire radiative power (FRP) is now retrieved using a radiance-based approach, generally decreasing FRP for all but the comparatively small fraction of high intensity fire pixels. We performed a Stage-3 validation of the Collection 5 and Collection 6 Terra MODIS fire products using reference fire maps derived from more than 2500 high-resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Our results indicated targeted improvements in the performance of the Collection 6 active fire detection algorithm compared to Collection 5, with reduced omission errors over large fires, and reduced false alarm rates in tropical ecosystems. Overall, the MOD14 Collection 6 daytime global commission error was 1.2%, compared to 2.4% in Collection 5. Regionally, the probability of detection for Collection 6 exhibited a ~3% absolute increase in Boreal North America and Boreal Asia compared to Collection 5, a ~1% absolute increase in Equatorial Asia and Central Asia, a ~1% absolute decrease in South America above the Equator, and little or no change in the remaining regions considered. Not unexpectedly, the observed variability in the probability of detection was strongly driven by regional differences in fire size. Overall, there was a net improvement in Collection 6 algorithm performance globally

    Preface

    Get PDF
    The 14th International Congress of Logic, Methodology and Philosophy of Science was held in July, 19th – 26th, 2011 in Nancy, the historic capital of Lorraine and birthplace of Henri Poincaré. We were very honored that the President of the French Republic, Monsieur Nicolas Sarkozy, generously agreed his patronage. The LMPS congresses represent the current state of the art and offer new perspectives in its fields. There were 900 registered participants from 56 different countries. They filled ..

    Preface

    Get PDF
    The 14th International Congress of Logic, Methodology and Philosophy of Science was held in July, 19th – 26th, 2011 in Nancy, the historic capital of Lorraine and birthplace of Henri Poincaré. We were very honored that the President of the French Republic, Monsieur Nicolas Sarkozy, generously agreed his patronage. The LMPS congresses represent the current state of the art and offer new perspectives in its fields. There were 900 registered participants from 56 different countries. They filled ..

    Preface

    Get PDF
    The 14th International Congress of Logic, Methodology and Philosophy of Science was held in July, 19th – 26th, 2011 in Nancy, the historic capital of Lorraine and birthplace of Henri Poincaré. We were very honored that the President of the French Republic, Monsieur Nicolas Sarkozy, generously agreed his patronage. The LMPS congresses represent the current state of the art and offer new perspectives in its fields. There were 900 registered participants from 56 different countries. They filled..

    Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    Get PDF
    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various specie

    Estudo da vegetação por sensoriamento remoto: comparação entre os índices NDVI e GEMI

    No full text
    Satellite derived vegetation indices have been successfully used for monitoring the surface conditions and have a great potential on the modelling of the climate system. A comparison between two of these indices - NDVI and GEMI - is carried out for images over the brazilian area and the preliminary results discussed

    The Generation and Forecast of Extreme Winds during the Origin and Progression of the 2017 Tubbs Fire

    No full text
    On 8–9 October 2017, fourteen wildfires developed rapidly during a strong Diablo wind event in northern California including the Tubbs Fire, which travelled over 19 km in 3.25 h. Here, we applied the CAWFE® coupled numerical weather prediction-fire modeling system to investigate the airflow regime and extreme wind peaks underlying the extreme fire behavior using simulations that refine from a 10 km to a 185 m horizontal grid spacing. We found that as Diablo winds travelled south down the Sacramento Valley and fanned out southwestward over the Wine Country, their strength waxed and waned and their direction wavered, creating varying locations near fire origins where wind overrunning topography reached 30–40 m/s, along with streaks and bursts of strong winds in the lee of some topographic features and stagnation downstream of others. Despite a statically stable layer in the lowest 1.5 km, the high Froude number flow sometimes resembled a hydraulic jump. Elsewhere, the flow behaved similarly to neutrally-stratified flow over small hills, creating wind extrema that exceeded 40 m/s at the crest of some lesser hills including near the Tubbs fire ignition, but which shed bursts of high speed winds that travel downstream at approximately 5–7-min intervals. Nonetheless, simulated fire growth lagged satellite detection of fire arrival in Santa Rosa by up to 1 h, although whether the data detect fire line or spotting is ambiguous. A forecast simulation with a 370 m horizontal grid spacing produced an on-time fire line arrival in Santa Rosa, with calculations executed 4 times faster than real time on a single computer processor
    corecore